香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

三元名家論壇-Hermite-Galerkin spectral method for nonlinear PDEs with fractional Laplacian in unbounded domain
作者:     供圖:     供圖:     日期:2021-11-30     來源:    

講座主題:Hermite-Galerkin spectral method for nonlinear PDEs with fractional Laplacian in unbounded domain

專家姓名:郭士民

工作單位:西安交通大學

講座時間:2021年12月2日 15:00-17:00

講座地點:點擊鏈接入會,https://meeting.tencent.com/dm/fKht60mQGOVc

會議ID:290-178-970

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this talk, we construct the Hermite-Galerkin spectral schemes for two kinds of nonlinear PDEs with fractional Laplacian in multidimensional unbounded domains: One is the coupled fractional Gordon-type systems, and the other is the Klein-Gordon-Schr?dinger equations. Applying Hermite-Galerkin spectral method in space and finite difference method in time, we establish the linearized fully discrete scheme for the nonlinear problems. Several numerical examples are conducted to show the accuracy, stability, and applications of the schemes.

主講人介紹:

郭士民,西安交通大學副教授,于2013年12月獲得西安交通大學理學博士學位;主要研究方向為非局部/分數階微分方程的高精度數值算法、譜方法與計算等離子體物理學;以第一作者在SIAM Journal on Scientific Computing、Plasma Sources Science & Technology等國際期刊上發表SCI論文29篇,單篇他引最高次數為260余次(Google學術),另有2篇論文入選“ESI高被引論文”;榮獲2019年度陜西省高等學校科學技術獎一等獎(第二完成人)與2019年度陜西省自然科學獎二等獎(第二完成人)。

大发888信誉平台| 东城国际| 百家乐娱乐城玩法| 稳赢百家乐官网的玩法技巧| 东宁县| 至尊娱乐| 国际百家乐官网规则| 至尊百家乐官网年代| 百家乐官网推广| 百家乐官网庄闲当哪个好| 利记娱乐场| 真人版百家乐官网试玩| 博发百家乐游戏| 在线水果机游戏| 大发888娱乐城官网下载真钱| 百家乐官网现金网开户平台| 百家乐稳中一注法| 谷城县| 百家乐官网游戏发展| 网上真钱麻将| 精通百家乐官网的玩法技巧和规则 | 致胜百家乐的玩法技巧和规则| 大发888游戏币| 百家乐官网玩家技巧分享| 百家乐庄闲统计数| 老虎机作弊器| 百家乐官网游戏接口| 武汉百家乐赌具| 金都娱乐| 百家乐六合彩3535| 百家乐赢一注| 百家乐官网园36bol在线| 百家乐详解| 百家乐官网事电影| 利都百家乐国际娱乐场开户注册| 壹贰博网站| 百家乐官网真人赌场娱乐网规则| 澳门金莎娱乐城| 澳门百家乐会出千吗| 普陀区| 百家乐园能贷款吗|