香港六合彩-澳门六合彩-时时彩

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇-Stein variational gradient descent with local approximations
作者:     供圖:     供圖:     日期:2021-12-13     來(lái)源:    

講座主題:Stein variational gradient descent with local approximations

專家姓名:閆亮

工作單位:東南大學(xué)

講座時(shí)間:2021年12月16日 9:00-10:00

講座地點(diǎn):騰訊會(huì)議,會(huì)議ID:403792057

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

Bayesian computation plays an important role in modern machine learning and statistics to reason about uncertainty. A key computational challenge in Bayesian inference is to develop efficient techniques to approximate, or draw samples from posterior distributions. Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for this issue. However, the vanilla SVGD requires calculating the gradient of the target density and cannot be applied when the gradient is unavailable or too expensive to evaluate. In this talk, we explore one way to address this challenge by the construction of a local surrogate for the target distribution in which the gradient can be obtained in a much more computationally feasible manner. More specifically, we approximate the forward model using a deep neural network (DNN) which is trained on a carefully chosen training set, which also determines the quality of the surrogate. To this end, we propose a general adaptation procedure to refine the local approximation online without destroying the convergence of the resulting SVGD. This significantly reduces the computational cost of SVGD and leads to a suite of algorithms that are straightforward to implement. The new algorithm is illustrated on a set of challenging Bayesian inverse problems, and numerical experiments demonstrate a clear improvement in performance and applicability of standard SVGD.

主講人介紹:

閆亮,東南大學(xué)副教授、博士生導(dǎo)師。主要從事不確定性量化、貝葉斯反問(wèn)題理論與算法的研究。2018年入選東南大學(xué)“至善青年學(xué)者”(A層次)支持計(jì)劃,2017年入選江蘇省高校“青藍(lán)工程”優(yōu)秀青年骨干教師培養(yǎng)對(duì)象。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目?jī)身?xiàng),主持完成國(guó)家自然科學(xué)基金青年項(xiàng)目和江蘇省自然科學(xué)基金青年項(xiàng)目各一項(xiàng)。已經(jīng)在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等國(guó)內(nèi)外刊物上發(fā)表30多篇學(xué)術(shù)論文.

二八杠网站| 百家乐筹码免运费| 百家乐官网游戏模拟| 盛大百家乐的玩法技巧和规则 | 御金百家乐官网娱乐城| 大发888平台啥时候最赢钱| 木棉百家乐官网网络| 余杭棋牌世界| 太阳城百家乐杀祖玛| 百家乐官网免費游戏| 百家乐心得打法| 百家乐官网9人桌| 百家乐连跳趋势| 玩百家乐上高尔夫娱乐场| 免邮百家乐官网布桌| 留坝县| 网络百家乐开户网| 澳门百家乐官网官方网站| 东方夏威夷网站| 百家乐赌博大全| 百家乐官网园百利宫娱乐城怎么样百家乐官网园百利宫娱乐城如何 | 缅甸百家乐官网玩家吗| 大发888娱乐城 casino| 百家乐输一压二| 玩百家乐官网678娱乐城| 德州扑克大小顺序| 木棉百家乐的玩法技巧和规则 | 大发888网页多少| 百家乐推荐怎么看| 百家乐官网筹码价格| 澳门百家乐官网秘诀| 聚龍社百家乐的玩法技巧和规则| 百家乐官网推锅| 淘金盈赌场有假吗| 发中发百家乐的玩法技巧和规则 | 大发888免费下载| 免费百家乐官网分析工具| 百家乐官网下注瀛钱法| 大发麻将| 大发888 迅雷快传| 网上的百家乐怎么才能赢|