香港六合彩-澳门六合彩-时时彩

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics
作者:     供圖:     供圖:     日期:2022-08-25     來源:    

講座主題:Piecewise ensemble averaging stochastic Liouville equations for simulating non-Markovian quantum dynamics

專家姓名:嚴(yán)運(yùn)安

工作單位:魯東大學(xué)

講座時(shí)間:2022年8月29日10:00-11:00

講座地點(diǎn):物電學(xué)院1511報(bào)告廳

主辦單位:煙臺(tái)大學(xué)物理與電子信息學(xué)院

內(nèi)容摘要:

The stochastic scheme is a fruitful tool for simulating the challenging non-Markovian quantum dynamics. Its performance at long time, however, degrades due to the intrinsic fast increase in the variance of the quantum Brownian motion. This talk presents the recent progress on developing the stochastic Liouville equations with piecewise stationary noises. Starting from a conventional stochastic scheme, we can always decompose the involved noises into two parts: the principal part assuming piecewise correlations and the auxiliary part recovering the full correlation. A partial stochastic average over the auxiliary noises yields a stochastic Liouville equation that only involves noises with piecewise correlations and can hence be averaged separatedly for different time intervals. Meanwhile the dissipative influence of the auxiliary noises is rigorously incorporated with integrals over the functional derivatives with respect to the principal noises. The working equation now assumes a similar structure to the non-Markovian quantum state diffusion. Thanks to the noise disentanglement in different time intervals, we can perform piecewise ensemble average and serve the average of the preceding interval as the initial condition of the subsequent propagation. This strategy avoids the long-time stochastic average and the corresponding statistical errors will be saturated at long times. This talk will give numerical results for the spontaneous decay of two-state atoms and the spin-boson model and shows that the suggested method enables us to simulate the long-time quantum dissipative dynamics with long memories in the non-perturbative regime.

主講人介紹:

嚴(yán)運(yùn)安,魯東大學(xué)教授。2002年于中國科學(xué)院理論物理研究所獲博士學(xué)位,2002-2012年,先后在中國科學(xué)院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究,2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué)。嚴(yán)運(yùn)安教授目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動(dòng)力學(xué)。

百家乐官网软件编辑原理| 博彩通评级| 百家乐代打是真的吗| 菲利宾太阳城娱乐网| 百家乐官网官方网址| 24山辅星水法分阴阳| 大发888网站是多少呢| 百家乐官网赌博现金网平台排名| 百家乐中庄闲比例| 百家乐官网网络公式| 百家乐网站那个好| 利博娱乐城开户| 百家乐游戏怎样玩| 尊龙体育| 澳门百家乐如何算牌| 百家乐官网食杂店| 大发888真人真钱赌博| 百家乐官网看单技术| 澳门百家乐备用网址| 百家乐官网tt娱乐| 百家乐博彩平台| 百家乐官网有多少网址| 红桃K百家乐的玩法技巧和规则| 英德市| 百家乐投注哪个信誉好| 百家乐官网双龙出海注码法| 大发888真人真钱游戏| 方形百家乐官网筹码| 红桃k娱乐城备用网址| 百家乐庄闲机率分析| 百家乐官网网络投注| 宁化县| 百家乐技巧开户网址| 黄金城百家乐官网安卓版| 百家乐官网游戏论坛| 百家乐园首选去澳| 新利百家乐官网的玩法技巧和规则 | 百家乐桌蓝盾在线| 北宁市| 大发888娱乐场下载客户端| 皇冠网百家乐官网啊|