香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

新澳门百家乐官网的玩法技巧和规则| 亚洲顶级赌场手机版| 广州百家乐官网筹码| 做生意风水方向怎么看| 黄金城百家乐官网安卓版| 百家乐网络游戏平台| 澳门百家乐官网打缆| 百家乐赌博破解| 网上百家乐官网骗人吗| 百家乐赢退输进有哪些| 澳门百家乐官网有哪些| 娱乐网百家乐的玩法技巧和规则| 百家乐官网软件官方| 百家乐五种路单规| 缅甸百家乐官网娱乐| 新时代百家乐的玩法技巧和规则| 澳门百家乐官网赢钱秘| 大发888优惠活动| 钱柜百家乐官网娱乐城| 大发888免费送奖金| 澳门百家乐官网赢技巧| 威尼斯人娱乐城怎么样| 金都百家乐官网的玩法技巧和规则| 金冠娱乐城 安全吗| 百家乐能赚大钱吗| A8百家乐官网现金网| 威尼斯人娱乐 老品牌| 金龙娱乐城开户送彩金| 真钱百家乐游戏大全| 威尼斯人娱乐场注册| 网络百家乐官网路单图| 大发888吧| 百家乐扫瞄光纤洗牌机扑克洗牌机扑克洗牌机| 百家乐官网上分器定位器| 大佬百家乐的玩法技巧和规则| 百家乐视频挖坑| 百家乐官网国际娱乐网| 万载县| 大发888娱乐场奖金| 真钱百家乐游戏排行| 百家乐官网博彩资讯论坛|