香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

金花百家乐官网的玩法技巧和规则| 大发888真钱娱乐平台| 古浪县| 延边| 百家乐桌布9人| 赚钱的棋牌游戏| 百家乐官网八卦投注法| 百家乐官网最新投注法| 吕百家乐官网赢钱律| 大发888亚洲游戏下载| 澳门百家乐官网玩法心得技巧 | 百家乐游戏打水方法| 老牌全讯网| 百家乐官网策略网络游戏信誉怎么样 | 百家乐游戏机| 凯斯百家乐的玩法技巧和规则 | 威尼斯人娱乐城官网地址| 金宝博百家乐官网现金| 真人百家乐园| 会宁县| 金花百家乐官网的玩法技巧和规则 | 百家乐官网棋| 太子娱乐城网址| 闲和庄百家乐官网娱乐场| 百家乐技巧介绍| 百家乐官网自动算牌软件| 七胜百家乐娱乐城总统网上娱乐城大都会娱乐城赌场 | ag百家乐官网下载| 大发888线上| 888百家乐官网的玩法技巧和规则 大发百家乐官网的玩法技巧和规则 | 大发888游戏代冲省钱技巧| 百家乐官网大赌场娱乐网规则| 大发888体育真人| 百家乐旺门打法| 百家乐官网概率怎么算| 转载24山五行相克| 百家乐官网发牌的介绍| 奥斯卡百家乐的玩法技巧和规则| 博联百家乐官网游戏| 定西市| 百家乐官网出庄概率|