香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

四方百家乐官网的玩法技巧和规则 | 顶旺国际| 百家乐视频聊天游戏| 昌乐县| 百家乐又称为什么| 百樂坊百家乐官网的玩法技巧和规则 | 大发888真人存款| 澳门百家乐官网信誉| 大发888信誉平台| 澳门赌百家乐打法| 买百家乐官网程序| 施秉县| 试玩百家乐的玩法技巧和规则| 深圳百家乐官网的玩法技巧和规则 | 电动扑克| 大发888 xp缺少 casino| 百家乐英皇娱乐城| 百家乐出千大全| 枣强县| 利都百家乐官网国际娱乐场开户注册| 真人百家乐官网在线玩| 蒙特卡罗娱乐场| 百家乐www| 杨公24山分金兼向吉凶| 网络百家乐官网路子玩| 视频百家乐官网攻略| 百家乐官网视频游戏掉线| 娱网棋牌| 香港六合彩大全| 龙岩棋牌乐| 百家乐轮盘一体机厂家| 百家乐板路| 百家乐必胜方程式| 玩百家乐有何技巧| 神人百家乐赌场| 百家乐开户送8彩金| 百家乐高人破解| 网页百家乐官网游戏下载| 两当县| 百家乐suncity| 五星百家乐官网的玩法技巧和规则 |