香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

迪威百家乐娱乐网| 百家乐的技术与心态| 百家乐凯时赌场娱乐网规则 | 百家乐官网技巧赚钱| 威尼斯人娱乐城 2013十一月九问好| 金冠娱乐城官网| 同乐城百家乐现金网| 菲律宾百家乐| 百家乐技术论坛| 百家乐官网最新赌王| 百家乐破解仪恒达| 南京百家乐官网赌博现场被抓| 威尼斯人娱乐城微博| 聚龍社百家乐官网的玩法技巧和规则| 大发888游戏免费下载| 属羊的和属猪的做生意| 湖州市| 克拉克百家乐官网的玩法技巧和规则| 足球博彩网| 百家乐官网游戏新| 百家乐那个娱乐城信誉好| 百家乐官网接线玩法| 全讯网353788| 百家乐技巧大全| 百家乐官网过两关| www.18lk.com| 威尼斯人娱乐城信誉| 百家乐投注庄闲法| 百家乐官网游戏辅助| 金坛市| 大发888官方我的爱好| 百家乐制胜秘| 赌百家乐的方法| 百家乐官网赌场凯时娱乐| 威尼斯人娱乐| 申请百家乐会员送彩金| 火箭百家乐官网的玩法技巧和规则 | 百家乐官网机器出千| 东丽区| 香港六合彩曾道人| 大发888娱乐城怎么玩|