香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

爱赢百家乐官网现金网| 利高百家乐的玩法技巧和规则| 网上百家乐官网心得| 金沙城百家乐官网大赛规则| 百家乐注册开户送彩金| 二八杠筒子| 百家乐合作代打| 澳门百家乐规例| 大发888真钱游戏| 网上百家乐官网赌博犯法吗| 百家乐官网开户最快的平台是哪家 | 百家乐代理网址| 威尼斯人娱乐城正规吗| 网上百家乐官网可靠| 真钱百家乐官网五湖四海全讯网| 百家乐如何投注技巧| kk娱乐城开户| 百家乐官网美女视频聊天| 百家乐注册送免费金| 张家港百家乐官网赌博| 百家乐牌九| 老虎百家乐官网的玩法技巧和规则| 百家乐视频小游戏| 博彩吧| 做生意发财招财图像| 大发888娱乐城真钱游戏| 百家乐官网是不是有技巧| 百家乐官网赌博筹| 大发888boaicai| E世博百家乐官网的玩法技巧和规则| 百家乐干洗店| 大发888 大发娱乐城| 琼海市| 巴黎百家乐地址| 在线赌场| 七匹狼百家乐的玩法技巧和规则 | 百家乐官网微心打法| 百家乐金币游戏| 百家乐官网傻瓜式投注法| 金冠百家乐的玩法技巧和规则| 蓝盾百家乐官网庄家利润分|