香港六合彩-澳门六合彩-时时彩

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

太阳城娱乐城申博| 百家乐玩揽法的论坛| 大发888下载客户端| 百家乐软件代理打| 娱乐城注册送现金58| 百家乐官网怎么看大小| 网络百家乐真假| 宣化县| 百家乐官网真人游戏娱乐| 百家乐二路珠无敌稳赢打法| 华盛顿百家乐的玩法技巧和规则| 百家乐官网赌场怎么玩| 玩百家乐保时捷娱乐城| 易玩棋牌怎么样| 百家乐官网双龙出海注码法| 百家乐官网方案| 百家乐官网好多假网站| 威尼斯人娱乐场 老品牌值得您信赖| 金濠国际| 喜达百家乐官网现金网| 百家乐庄家怎样赚钱| 使用的百家乐官网软件| 大发888娱乐城casino| 现金百家乐官网代理| 三公百家乐在线哪里可以玩| 新邵县| 百家乐投注系统| 188金宝博娱乐城| 免费百家乐官网游戏下| 金宝博娱乐场| 大赢家百家乐官网娱乐| 鸿胜博娱乐| 百家乐皇室百家乐的玩法技巧和规则 | 百家乐官网赌博策略论坛| 澳门百家乐怎么下载| 365新网址| 网络百家乐官网会作假吗| 有百家乐的游戏平台| 百家乐官网好不好| 澳门百家乐官网娱乐城打不开| 大发888博彩官方下载|