香港六合彩-澳门六合彩-时时彩

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)報告-Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations
作者:     供圖:     供圖:     日期:2020-11-16     來源:    

講座主題:Convergence of stochastic methods for describing quantum dissipative dynamics and non-Markovian quantum master equations

主講人: 嚴(yán)運安

工作單位:魯東大學(xué)物理與光電工程學(xué)院

活動時間:2020年11月19日 10:00-11:00

講座地點:光電學(xué)院1511報告廳

主辦單位:煙臺大學(xué)光電信息科學(xué)技術(shù)學(xué)院

內(nèi)容摘要:

The quantum dissipative dynamics is often described by system-plus-environment model and the effect of the environment on the evolution of the system can be characterized by noises. With such a paradigm, the stochastic approach becomes not only a powerful numerical method but also a useful tool to develop more efficient deterministic approaches for describing quantum dissipative dynamics. Various stochastic methods are available in the literature, such as the stochastic Liouville equation and the stochastic Schr?dinger equation. Also, different deterministic equations, to be specific, the hierarchical approach and the formulas of differentiation, can be obtained from the same stochastic Liouville equation. Here we present our progress demonstrating the convergence of the stochastic methods. First, we have proven the equivalence between the stochastic Liouville equation based on the stochastic decoupling of the system-bath interaction and the non-Markovian quantum state diffusion approach. Second, we have shown the unification between the formula of differentiation and the hierarchy approach. The equivalence of different stochastic approaches and the unification of different deterministic methods derived from the same stochastic equation show the convergence of the stochastic equations for describing quantum dissipative dynamics. These results may stimulate more efficient, versatile methods to study quantum dissipative systems.

主講人介紹:

嚴(yán)運安教授2002年于中國科學(xué)院理論物理研究所獲得博士學(xué)位。2002-2012年,他先后在中科院化學(xué)研究所、美國德克薩斯理工大學(xué)、德國柏林自由大學(xué)、德國羅斯托克大學(xué)和日本九州大學(xué)進(jìn)行博士后和訪問學(xué)者研究。他于2012年加入貴州師范學(xué)院,2018年加入魯東大學(xué),現(xiàn)任魯東大學(xué)教授。他目前的研究方向是發(fā)展新方法模擬凝聚相中分子體系的耗散動力學(xué)。

海立方百家乐海立方| 百家乐桌手机套| 大发888娱乐真钱游戏| 景德镇市| 百家乐官网真人游戏赌场娱乐网规则 | 百家乐娱乐城彩金| 二八杠技巧培训| 百家乐官网论坛在线提供| 六合彩特码| 百家乐官网双龙出| 游戏百家乐押金| 德州扑克技巧| 免费玩百家乐官网的玩法技巧和规则 | 百家乐公式软件| 百家乐官网h游戏怎么玩| 百家乐游戏试玩免费| 百家乐官网投注玩多少钱| 缅甸百家乐娱乐| 松潘县| 百家乐出庄概率| 莆田棋牌迷游戏中心| 百家乐官网赌场| 德州扑克保险赔率| 百家乐分享| 百家乐官网波音平台有假吗| 百家乐真人娱乐场开户注册 | 百家乐高手技巧| 德州扑克怎么玩| 百家乐微笑不倒| 百家乐官网注册送10彩金| 大发888亚洲赌场| 夜总会百家乐官网的玩法技巧和规则 | 下载百家乐棋牌大厅| 仁化县| 大家赢百家乐投注| 德州扑克保险| 百家乐专业术语| 立即博百家乐现金网| 网上百家乐官网洗码技巧| 澳门在线转盘| 威尼斯人娱乐城品牌|